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Elements of simulation analysis – model verification and 
validation 

 Verification focuses on the process of determining whether 
the operational logic of the model (the computer program) 
corresponds to the logic flow cart (are there any errors in 
the program ????).  
 

 Validation focuses on the process of determining if the 
model is meaningful and accurate representation of the 
real system. 
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Elements of simulation analysis – model verification and 
validation 

 Model verification and validation is concerned with three models. 
• Conceptual model 
• Logic model 
• Computer model 

 Validating the conceptual model is the process of establishing the 
relevance of our abstraction of the real system, and what questions 
the simulation model is expected to answer. 

 

 Validating the conceptual model can be thought of as a binding 
process, in which the simulation analysts, decision makers, and 
managers, agree upon which aspects of the real system which should 
be included in the simulation model and what information that the 
model will provide as output. 
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Elements of simulation analysis – model verification and 
validation 

 The logical model, the flow chart, serves as a bridge from 
the conceptual model to the computer model. 
 

 Validating the logical model is easy if the conceptual 
model has been well constructed. 
 

 Three basic questions can be used: 
• Are the events within the model processed correctly. 
• Are the mathematical formulas and relationship in the model valid. 
• Are the statistics and measures of performance calculated 

correctly.  
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Elements of simulation analysis – model verification and 
validation 

 A common method for verifying and validating the event 
processing within the logical model is a structured walk-
through (a form of review meeting).  
 

 In a structured walk-through the developer of the logical 
model must explain the detailed logic of the model to other 
members of the simulation project team.  
 

 Structured walk-through is not unique for simulation 
project it is applicable on almost all software development 
projects. 
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Elements of simulation analysis – model verification and 
validation 

 The method of detecting errors in mathematical calculations or 
formulas is not much different than detecting errors in semantics or 
spelling in natural languages. That is, careful scrutiny by the analysts 
and proofing by someone else.  

 

 A common error in simulation modeling is to fail to update all relevant 
statistics and measures when an event occurs. 

 

 One method of verifying that the statistics and the measures of 
performance are updated correctly is the use of an event graph. In this 
each event state is associated with a complete list of all statistics and 
measure of performance that will change when the event occurs. 
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Elements of simulation analysis – model verification and 
validation 

 Verifying the computer program for a simulation model is 
not much different from verifying any software. 
 

 It often requires imagination and ingenuity of the 
programmer, it is one of the few things that only can be 
conducted by the persons with programming skills in a 
simulation study team. 
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Elements of simulation analysis – model verification and 
validation 

 Six general approaches to verify a computer program 
are:  
• Structured programming methods 
• Tracing the simulation during run time 
• Program testing 
• Logical relationship checks 
• Comparison to analytical models 
• Graphics 

 



9 

Elements of simulation analysis – model verification 
and validation 

 Some rules of the thumb for designing well-structured 
computer programs are: 
• Top-down design: The program is designed starting with the 

highest level processes which are then decomposed into 
subsidiary modules which themselves can be further decomposed.  

• Modularity: Each subsidiary module is responsible for a single 
function. 

• Stepwise refinement: Each module is developed using a step-by-
step refinement of the module’s function. 

• Compact modules: Modules should be short in length, fifty lines 
of code is often given as a upper bound. 

• Structured control: All control code should be simple to 
understand and highly structured IF-THEN-ELSE, WHILE, 
REPEAT-UNTIL, FOR and CASE statements.  
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Elements of simulation analysis – model verification and 
validation 

It is always easier to verify 20 modules 
averaging 25 lines of code, than it is to 
verify one module of 500 lines of code !!! 
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Elements of simulation analysis – model verification and 
validation 

 When the simulation program is designed, mechanisms 
for tracing should be included directly and not patched 
when erroneous execution is discovered in the simulation 
program, traces should be possible to turn on and off. 
 

 The trace mechanisms can be based on that a print 
function is included in all functions, printing all relevant 
simulation parameters and simulation time. 
 

 However, one should be aware of that the amount of trace 
output data can be overwhelming.     
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Elements of simulation analysis – model verification and 
validation 

 The two most basic approaches for testing a computer 
program are bottom-up and top-down testing. 
 

 In bottom-up testing the lowest, most basic modules are 
tested first (sometimes referred to as unit testing). 
 

 After the basic units have been tested, integration tests 
are performed in which interfaces between two or more 
modules are tested.  
 

 This continues iteratively until the whole system can be 
tested as one instance. 
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Elements of simulation analysis – model verification and 
validation 

 In top-down testing, the testing begins with the main module and 
incrementally moves down to lower modules. 

 

 In top-down testing, stubs or dummy routines are required to simulate 
the function of lower-level modules. 

 

 An advantage of the top-down approach is that testing can be 
conducted parallel with the development of the software. 

 

 Programmers and management often feel more comfortable with top-
down testing because it gives the appearance that progress is being 
made.  
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Elements of simulation analysis – model verification and 
validation 

 Checking the logic expressions in IF-THEN-ELSE 
statements are crucial. 
 

 Avoid a depth of more than 7 IF statements. 
 

 Typically, logic errors are not randomly or uniformly 
distributed throughout a computer program, they tend to 
cluster into colonies of bugs.  
 

 Queues and lists generate runtime errors, memory 
leakage, do not use recursive functions or be extremely 
careful when you use it.  
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Elements of simulation analysis – model verification and 
validation 

 When the computer program has been verified, assumed 
to be correct, the next step is to validate whether the 
simulation program generates output that is a valid 
representation of the real system or not. 
 

 Program validation is to judge whether the simulation 
program have enough confidence in the result to use it as 
part of the decision making process. 
 

 The most straightforward method is to compare simulation 
result with an existing system. This is however only 
possible if necessary data is available from a real system. 
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Elements of simulation analysis – model 
experimentation and optimization 

 There are some aspects in the interpretation of simulation 
models outputs that are unique to simulation. The main 
issue is that a simulation models only yield estimates of 
measures that are subject to sampling errors.  
 
• As an example; an analytical evaluation provide mean and 

variance and exact probability distributions for the measures of 
performance.   
 

• Simulations on the other hand provide the sample mean and 
sample variance and sample distributions, from these we must 
estimate population parameters and distributions. 
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Elements of simulation analysis – model 
experimentation and optimization 

 The major issue in obtaining useful estimates from 
samples are: 
• that the samples are representative for the typical system behavior   
• that the sample size is large enough to provide some stated level 

of precision for the performance measure estimates. 

 
 Sample size is especially important since the precision of 

estimates is dependent upon the variance of the sample 
mean and the variance changes inversely with the sample 
size 
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Elements of simulation analysis – model 
experimentation and optimization 

 We may now turn to the ultimate purpose of model 
experimentation: to derive information about the system 
behavior. 
 

 This information should be in a format which is helpful for 
decision making. 
 

 When considering system performance we may whish to 
know how well a system behaves in an absolute sense, 
comparatively, or in contrast to one or several system 
configurations. 
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Elements of simulation analysis – model 
experimentation and optimization 

 Even for the modest experimental design, enumeration of 
all possible  solutions is not recommended nor feasible in 
searching for the best or very good configurations of the 
system under consideration. 
 

 Consequently we need a more directed, structured 
approach for seeking worthwhile solutions. 
 

 Two different approaches are: 
• predetermined sets of experiments 
• optimum seeking techniques. 
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Elements of simulation analysis – model 
experimentation and optimization 

 The predetermined sets of experiments approach identifies factors 
which would affect some output measure. 

 

 This is done by performing experiments with a limited set of factors, 
set at a limited set of values and combination of these. 

 

 Statistical techniques, often referred to as analysis of variance 
(ANOVA) is then applied to discern whether a specific factor have any 
large impact on the output measure of performance. 

 

 If for example two factors are considered, at three different levels, nine 
runs are necessary. 
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Elements of simulation analysis – model 
experimentation and optimization 

 The use of predetermined set of model is effective in 
identifying important factors.  
 

 Unfortunately can the technique not lead one toward the 
overall optimal solution (a global optimum). 
 

 It can not even guarantee one of several very good 
solutions (a local optimum).  
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Elements of simulation analysis – model 
experimentation and optimization 

 One optimum seeking technique is simply to start generating output to 
form a response surface, a two factor experiment defines a surface in 
three dimensions, i.e., compare with a topographic map. 

 By using different strategies one can reach high points or even the 
summit. 

 One often used way is steepest ascent, it requires that sufficient 
simulations runs are made to determine which direction that seems to 
yield the greatest increase in altitude. 

 The decision variables are changed accordingly, and the process is 
continued until one can not go higher (a local or global optima is 
reached).  
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An implementation example of a discrete 
event simulator. 
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An implementation and execution example of a discrete 
event simulator. 

 Consider a s service facility with a single server, e.g. an 
information desk. 

 We want to estimate the average delay in the queue, 
average number of customers in the queue and expected 
utilization of the service desk. 

Server 
Customer 
in service 

Customers in 
queue 

An arriving 
customer 

A departing 
customer 

Try to visualize the problem formulation !!!!! 
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An implementation and execution example of a discrete 
event simulator. 

 We assume the next event time advance, visualize the time domain 
operation of the simulator and define some related variables. 
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An implementation and execution example of a discrete 
event simulator. 

 Data structures 
• System state variables: The collection of state variables 

necessary to describe the state of a system at a particular time. 
• Simulation clock: A variable given the current value of simulated 

time. 
• Event list: A list containing the next time an event will occur. 
• Statistical counters: Variables used for storing statistical 

information about the system performance. 
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An implementation and execution example of a discrete 
event simulator. 

 Routines 
• Initialization routine: A sub program to initialize the simulation 

model at t=0. 
• Timing routine: A subprogram that determines the next event 

from the event list and then advances the clock to the time when 
the event occurs. 

• Event routine: A subprogram that updates the system state when 
a particular type of event occurs. 

• Library routines: A set of subprograms used to generate random 
observations from probability distributions that were predetermined 
as part of the simulation model during problem formulation and 
data collection. 
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An implementation and execution example of a discrete 
event simulator 

• Report routine: A subprogram that computes estimates of the 
desired measure of performance and produces a report when the 
simulation ends. 

• Main program: The main program invoke the timing routine to 
determine the next event and then transfer control to the 
corresponding event routine to update the system appropriately. 
The main program may also check for termination of the simulation 
and invoke the report generator when the simulation is over. 
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An implementation and execution example of a discrete 
event simulator 
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An implementation and execution example of a discrete 
event simulator 

 The simulation will begin with in the state, i.e., no 
customer is present and the server is idle.  

 At time 0, we will begin waiting for the arrival of the first 
customer, which will occur after the first inter-arrival time 
A1. 

 We wish to simulate this system until a fixed number, n, of 
customers have completed their delays in the queue. 

 Note that the time the simulation will stop is thus a random 
variable, depending on the observed values of the inter-
arrival and the service time random variables. 
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Some measures 

 To measure the performance of this system, we will look at the 
estimates of the three measures of performance, customer delay, 
queue length and utilization. 

 First the estimate of average customer delay, d(n) of the n customers. 

 One interpretation of this is that d(n), is the average of the number of 
n customers delay.  

 From a single run of the simulation resulting in customer delays: D1, 
D2, D3…….Dn, and obvious estimator of d(n) is:   
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Some measures 

 The average number of customers in the queue, q(n), this is a different 
kind of average than the previous because it is taken over continuous 
time, rather than over customers. 

 Let Q(t) denote the number of customers in the queue at time t for any 
t ≥ 0, and let T(n) be the time required to observe our n delays in the 
queue. 

 For any time t between 0 and T(n), Q(t) is nonnegative integer.  
 Further if we let pi be the expected proportion of the time Q(t) is equal 

to i, then a reasonable estimate of q(n) would be: 
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q(n) is a weighted average of the possible values of I for the queue length Q(t), 
with the weights being the expected proportion of time the queue spends at each 
of its possible position 
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Some measures 

 Computationally it is however easier rewrite q(n) using some 
geometric considerations. If we let Ti be the total time during the 
simulation that the queue is of length i, then T(n)=T0+T1+T2….. and  

     pi=Ti/T(n)  

 so that we can rewrite it to 
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Easier understood by a visualization !!!!! 
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Some measures 

T0 = (1.6 - 0.0) + (4.0 - 3.1) + (5.6 - 4.9) = 3.2 

T1 = (2.1 - 1.6) + (3.1 - 2.4) + (4.9 - 4.0) + (5.8 - 5.6) = 2.3 

T2 = (2.4 - 2.1) + (7.2 - 5.8) = 1.7 

T3 = (8.6 - 7.2) = 1.4 
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Some measures 

 The numerator is then: 

0
0 3.2 1 2.3 2 1.7 3 1.4 9.9i
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and our estimate of the time average number in the queue from this 
particular simulation run is 9.9 / 8.6 = 1.15. 

Note that each of the non-zero terms corresponds to one of the shaded 
areas in the figure.  

In other words, the summation is just the area under the Q(t) curve 
between the beginning and end of the simulation, i.e., 
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Some measures 

 The expected utilization of the server is the expected portion of time 
during the simulation that the server is busy. 

 It is easy to look at this quantity as a continuous time average, by 
defining a busy function, B(t). 

1 if the server is busy at time 
( )

0 if the server is idle at time 
t

B t
t


= 


 So u(n) could be expressed as the portion of time that B(t) is equal to 
1 (unity). 

Easier understood by a visualization !!!!! 
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Some measures 

 (3.3 0.4) (8.6 3.8) 7.7( ) 0.90
8.6 8.6
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Some measures 

 Again, the numerator can be viewed as the area under the 
B(t) function, i.e., 
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An implementation and execution example of a discrete 
event simulator 
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An implementation and execution example of a discrete 
event simulator 
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