
Quantitative methods and modeling:
Computer Simulation Part II

Urban Bilstrup (E327)
Urban.Bilstrup@hh.se

140923

2

Elements of simulation analysis – model verification and
validation

 Verification focuses on the process of determining whether
the operational logic of the model (the computer program)
corresponds to the logic flow cart (are there any errors in
the program ????).

 Validation focuses on the process of determining if the
model is meaningful and accurate representation of the
real system.

3

Elements of simulation analysis – model verification and
validation

 Model verification and validation is concerned with three models.
• Conceptual model
• Logic model
• Computer model

 Validating the conceptual model is the process of establishing the
relevance of our abstraction of the real system, and what questions
the simulation model is expected to answer.

 Validating the conceptual model can be thought of as a binding
process, in which the simulation analysts, decision makers, and
managers, agree upon which aspects of the real system which should
be included in the simulation model and what information that the
model will provide as output.

4

Elements of simulation analysis – model verification and
validation

 The logical model, the flow chart, serves as a bridge from
the conceptual model to the computer model.

 Validating the logical model is easy if the conceptual
model has been well constructed.

 Three basic questions can be used:
• Are the events within the model processed correctly.
• Are the mathematical formulas and relationship in the model valid.
• Are the statistics and measures of performance calculated

correctly.

5

Elements of simulation analysis – model verification and
validation

 A common method for verifying and validating the event
processing within the logical model is a structured walk-
through (a form of review meeting).

 In a structured walk-through the developer of the logical
model must explain the detailed logic of the model to other
members of the simulation project team.

 Structured walk-through is not unique for simulation
project it is applicable on almost all software development
projects.

6

Elements of simulation analysis – model verification and
validation

 The method of detecting errors in mathematical calculations or
formulas is not much different than detecting errors in semantics or
spelling in natural languages. That is, careful scrutiny by the analysts
and proofing by someone else.

 A common error in simulation modeling is to fail to update all relevant
statistics and measures when an event occurs.

 One method of verifying that the statistics and the measures of
performance are updated correctly is the use of an event graph. In this
each event state is associated with a complete list of all statistics and
measure of performance that will change when the event occurs.

7

Elements of simulation analysis – model verification and
validation

 Verifying the computer program for a simulation model is
not much different from verifying any software.

 It often requires imagination and ingenuity of the
programmer, it is one of the few things that only can be
conducted by the persons with programming skills in a
simulation study team.

8

Elements of simulation analysis – model verification and
validation

 Six general approaches to verify a computer program
are:
• Structured programming methods
• Tracing the simulation during run time
• Program testing
• Logical relationship checks
• Comparison to analytical models
• Graphics

9

Elements of simulation analysis – model verification
and validation

 Some rules of the thumb for designing well-structured
computer programs are:
• Top-down design: The program is designed starting with the

highest level processes which are then decomposed into
subsidiary modules which themselves can be further decomposed.

• Modularity: Each subsidiary module is responsible for a single
function.

• Stepwise refinement: Each module is developed using a step-by-
step refinement of the module’s function.

• Compact modules: Modules should be short in length, fifty lines
of code is often given as a upper bound.

• Structured control: All control code should be simple to
understand and highly structured IF-THEN-ELSE, WHILE,
REPEAT-UNTIL, FOR and CASE statements.

10

Elements of simulation analysis – model verification and
validation

It is always easier to verify 20 modules
averaging 25 lines of code, than it is to
verify one module of 500 lines of code !!!

11

Elements of simulation analysis – model verification and
validation

 When the simulation program is designed, mechanisms
for tracing should be included directly and not patched
when erroneous execution is discovered in the simulation
program, traces should be possible to turn on and off.

 The trace mechanisms can be based on that a print
function is included in all functions, printing all relevant
simulation parameters and simulation time.

 However, one should be aware of that the amount of trace
output data can be overwhelming.

12

Elements of simulation analysis – model verification and
validation

 The two most basic approaches for testing a computer
program are bottom-up and top-down testing.

 In bottom-up testing the lowest, most basic modules are
tested first (sometimes referred to as unit testing).

 After the basic units have been tested, integration tests
are performed in which interfaces between two or more
modules are tested.

 This continues iteratively until the whole system can be
tested as one instance.

13

Elements of simulation analysis – model verification and
validation

 In top-down testing, the testing begins with the main module and
incrementally moves down to lower modules.

 In top-down testing, stubs or dummy routines are required to simulate
the function of lower-level modules.

 An advantage of the top-down approach is that testing can be
conducted parallel with the development of the software.

 Programmers and management often feel more comfortable with top-
down testing because it gives the appearance that progress is being
made.

14

Elements of simulation analysis – model verification and
validation

 Checking the logic expressions in IF-THEN-ELSE
statements are crucial.

 Avoid a depth of more than 7 IF statements.

 Typically, logic errors are not randomly or uniformly
distributed throughout a computer program, they tend to
cluster into colonies of bugs.

 Queues and lists generate runtime errors, memory
leakage, do not use recursive functions or be extremely
careful when you use it.

15

Elements of simulation analysis – model verification and
validation

 When the computer program has been verified, assumed
to be correct, the next step is to validate whether the
simulation program generates output that is a valid
representation of the real system or not.

 Program validation is to judge whether the simulation
program have enough confidence in the result to use it as
part of the decision making process.

 The most straightforward method is to compare simulation
result with an existing system. This is however only
possible if necessary data is available from a real system.

16

Elements of simulation analysis – model
experimentation and optimization

 There are some aspects in the interpretation of simulation
models outputs that are unique to simulation. The main
issue is that a simulation models only yield estimates of
measures that are subject to sampling errors.

• As an example; an analytical evaluation provide mean and

variance and exact probability distributions for the measures of
performance.

• Simulations on the other hand provide the sample mean and
sample variance and sample distributions, from these we must
estimate population parameters and distributions.

17

Elements of simulation analysis – model
experimentation and optimization

 The major issue in obtaining useful estimates from
samples are:
• that the samples are representative for the typical system behavior
• that the sample size is large enough to provide some stated level

of precision for the performance measure estimates.

 Sample size is especially important since the precision of

estimates is dependent upon the variance of the sample
mean and the variance changes inversely with the sample
size

18

Elements of simulation analysis – model
experimentation and optimization

 We may now turn to the ultimate purpose of model
experimentation: to derive information about the system
behavior.

 This information should be in a format which is helpful for
decision making.

 When considering system performance we may whish to
know how well a system behaves in an absolute sense,
comparatively, or in contrast to one or several system
configurations.

19

Elements of simulation analysis – model
experimentation and optimization

 Even for the modest experimental design, enumeration of
all possible solutions is not recommended nor feasible in
searching for the best or very good configurations of the
system under consideration.

 Consequently we need a more directed, structured
approach for seeking worthwhile solutions.

 Two different approaches are:
• predetermined sets of experiments
• optimum seeking techniques.

20

Elements of simulation analysis – model
experimentation and optimization

 The predetermined sets of experiments approach identifies factors
which would affect some output measure.

 This is done by performing experiments with a limited set of factors,
set at a limited set of values and combination of these.

 Statistical techniques, often referred to as analysis of variance
(ANOVA) is then applied to discern whether a specific factor have any
large impact on the output measure of performance.

 If for example two factors are considered, at three different levels, nine
runs are necessary.

21

Elements of simulation analysis – model
experimentation and optimization

 The use of predetermined set of model is effective in
identifying important factors.

 Unfortunately can the technique not lead one toward the
overall optimal solution (a global optimum).

 It can not even guarantee one of several very good
solutions (a local optimum).

22

Elements of simulation analysis – model
experimentation and optimization

 One optimum seeking technique is simply to start generating output to
form a response surface, a two factor experiment defines a surface in
three dimensions, i.e., compare with a topographic map.

 By using different strategies one can reach high points or even the
summit.

 One often used way is steepest ascent, it requires that sufficient
simulations runs are made to determine which direction that seems to
yield the greatest increase in altitude.

 The decision variables are changed accordingly, and the process is
continued until one can not go higher (a local or global optima is
reached).

23

An implementation example of a discrete
event simulator.

24

An implementation and execution example of a discrete
event simulator.

 Consider a s service facility with a single server, e.g. an
information desk.

 We want to estimate the average delay in the queue,
average number of customers in the queue and expected
utilization of the service desk.

Server
Customer
in service

Customers in
queue

An arriving
customer

A departing
customer

Try to visualize the problem formulation !!!!!

25

An implementation and execution example of a discrete
event simulator.

 We assume the next event time advance, visualize the time domain
operation of the simulator and define some related variables.

26

An implementation and execution example of a discrete
event simulator.

 Data structures
• System state variables: The collection of state variables

necessary to describe the state of a system at a particular time.
• Simulation clock: A variable given the current value of simulated

time.
• Event list: A list containing the next time an event will occur.
• Statistical counters: Variables used for storing statistical

information about the system performance.

27

An implementation and execution example of a discrete
event simulator.

 Routines
• Initialization routine: A sub program to initialize the simulation

model at t=0.
• Timing routine: A subprogram that determines the next event

from the event list and then advances the clock to the time when
the event occurs.

• Event routine: A subprogram that updates the system state when
a particular type of event occurs.

• Library routines: A set of subprograms used to generate random
observations from probability distributions that were predetermined
as part of the simulation model during problem formulation and
data collection.

28

An implementation and execution example of a discrete
event simulator

• Report routine: A subprogram that computes estimates of the
desired measure of performance and produces a report when the
simulation ends.

• Main program: The main program invoke the timing routine to
determine the next event and then transfer control to the
corresponding event routine to update the system appropriately.
The main program may also check for termination of the simulation
and invoke the report generator when the simulation is over.

29

An implementation and execution example of a discrete
event simulator

30

An implementation and execution example of a discrete
event simulator

 The simulation will begin with in the state, i.e., no
customer is present and the server is idle.

 At time 0, we will begin waiting for the arrival of the first
customer, which will occur after the first inter-arrival time
A1.

 We wish to simulate this system until a fixed number, n, of
customers have completed their delays in the queue.

 Note that the time the simulation will stop is thus a random
variable, depending on the observed values of the inter-
arrival and the service time random variables.

31

Some measures

 To measure the performance of this system, we will look at the
estimates of the three measures of performance, customer delay,
queue length and utilization.

 First the estimate of average customer delay, d(n) of the n customers.

 One interpretation of this is that d(n), is the average of the number of
n customers delay.

 From a single run of the simulation resulting in customer delays: D1,
D2, D3…….Dn, and obvious estimator of d(n) is:

 1()

n

i
i

D
d n

n
==
∑

32

Some measures

 The average number of customers in the queue, q(n), this is a different
kind of average than the previous because it is taken over continuous
time, rather than over customers.

 Let Q(t) denote the number of customers in the queue at time t for any
t ≥ 0, and let T(n) be the time required to observe our n delays in the
queue.

 For any time t between 0 and T(n), Q(t) is nonnegative integer.
 Further if we let pi be the expected proportion of the time Q(t) is equal

to i, then a reasonable estimate of q(n) would be:

0
() i

i
q n ip

∞

=

=∑
q(n) is a weighted average of the possible values of I for the queue length Q(t),
with the weights being the expected proportion of time the queue spends at each
of its possible position

33

Some measures

 Computationally it is however easier rewrite q(n) using some
geometric considerations. If we let Ti be the total time during the
simulation that the queue is of length i, then T(n)=T0+T1+T2….. and

 pi=Ti/T(n)

 so that we can rewrite it to

1 0()
()

iiT
q n

T n

∞

==
∑

Easier understood by a visualization !!!!!

34

Some measures

T0 = (1.6 - 0.0) + (4.0 - 3.1) + (5.6 - 4.9) = 3.2

T1 = (2.1 - 1.6) + (3.1 - 2.4) + (4.9 - 4.0) + (5.8 - 5.6) = 2.3

T2 = (2.4 - 2.1) + (7.2 - 5.8) = 1.7

T3 = (8.6 - 7.2) = 1.4

35

Some measures

 The numerator is then:

0
0 3.2 1 2.3 2 1.7 3 1.4 9.9i

i
iT x x x x

∞

=

= + + + =∑

and our estimate of the time average number in the queue from this
particular simulation run is 9.9 / 8.6 = 1.15.

Note that each of the non-zero terms corresponds to one of the shaded
areas in the figure.

In other words, the summation is just the area under the Q(t) curve
between the beginning and end of the simulation, i.e.,

()

0

()
()

()

T n

Q t dt
q n

T n
=
∫

36

Some measures

 The expected utilization of the server is the expected portion of time
during the simulation that the server is busy.

 It is easy to look at this quantity as a continuous time average, by
defining a busy function, B(t).

1 if the server is busy at time
()

0 if the server is idle at time
t

B t
t

=

 So u(n) could be expressed as the portion of time that B(t) is equal to
1 (unity).

Easier understood by a visualization !!!!!

37

Some measures

 (3.3 0.4) (8.6 3.8) 7.7() 0.90
8.6 8.6

u n − + −
= = =

38

Some measures

 Again, the numerator can be viewed as the area under the
B(t) function, i.e.,

()

0

()
()

()

T n

B t dt
u n

T n
=
∫

39

An implementation and execution example of a discrete
event simulator

40

An implementation and execution example of a discrete
event simulator

	Quantitative methods and modeling: Computer Simulation Part II
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model verification and validation
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Elements of simulation analysis – model experimentation and optimization
	Slide Number 23
	An implementation and execution example of a discrete event simulator.
	An implementation and execution example of a discrete event simulator.
	An implementation and execution example of a discrete event simulator.
	An implementation and execution example of a discrete event simulator.
	An implementation and execution example of a discrete event simulator
	An implementation and execution example of a discrete event simulator
	An implementation and execution example of a discrete event simulator
	Some measures
	Some measures
	Some measures
	Some measures
	Some measures
	Some measures
	Some measures
	Some measures
	An implementation and execution example of a discrete event simulator
	An implementation and execution example of a discrete event simulator

