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Block error correcting codes

Hamming codes

Hamming codes are a family of (n, k) block error correcting codes 
which are binary, linear and cyclic. They have the following 
parameters:

Number of check bits:  n – k = m

Block length: n = 2m – 1  

The number of information symbols: k = 2m – 1 – m

Minimum distance: dmin = 3

m ≤ 3
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Hamming codes
• A Hamming code word is generated by multiplying the data bits, 
M, by a generator matrix, G, using modulo2 arithmetic 

• This multiplication's result is called the code word vector, 
consisting of the original data bits and the calculated parity 
bits.

• The generator matrix, G used in constructing Hamming codes 
consists of I (identity matrix) and a parity generation matrix, A: 

G = [ I : A ] 

An example of a (7,4) Hamming code generator matrix:
1 0 0 0 | 1 1 1 
0 1 0 0 | 0 1 1 
0 0 1 0 | 1 0 1 
0 0 0 1 | 1 1 0

G =

Hamming codes

• It is clear that the A partition of G is responsible for the 
generation of the actual parity bits. 

• The Hamming rule requires that n-k = 3 for a (7,4) code, 
therefore A must contain three columns to produce three parity 
bits.

c1 = 1*m1 ⊕ 1*m2  ⊕ 1*m3 ⊕ 0*m4

c2 = 0*m1 ⊕ 1*m2 ⊕ 1*m3 ⊕ 1*m4

c3 = 0*m1 ⊕ 1*m2 ⊕ 0*m3 ⊕ 1*m4

The multiplication of a 4-bit data vector, M = (m1, m2, m3, m4), by 
G results in a 7-bit code word vector of the form X = (m1, m2, m3, 
m4, c1, c2, c3). 

X = MG
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Hamming codes

c1 = 1*m1 ⊕ 1*m2  ⊕ 1*m3 ⊕ 0*m4

c2 = 0*m1 ⊕ 1*m2 ⊕ 1*m3 ⊕ 1*m4

c3 = 0*m1 ⊕ 1*m2 ⊕ 0*m3 ⊕ 1*m4

The operation can be implemented as shift register:

m4 m3 m2 m1

c3 c2 c1

++ +
Parity bits

Information bits

Code word

Hamming codes
When a code is created the question is how to choose the 
matrix A in such a way that it has good error correcting 
properties. For a (7,4) Hamming code it is simple, put up the 
binary values for value 1 to 7 in a table.

1 → 0 0 1 
2 → 0 1 0 
3 → 0 1 1 
4 → 1 0 0 
5 → 1 0 1 
6 → 1 1 0 
7 → 1 1 1

H = 
| 1 0 1 1 | 1 0 0 | 
| 1 1 0 1 | 0 1 0 |  
| 1 1 1 0 | 0 0 1 | 

1 0 0 0 | 1 1 1 
0 1 0 0 | 0 1 1 
0 0 1 0 | 1 0 1 
0 0 0 1 | 1 1 0

G =

Take the binary value in the 
table that can form the 
identity matrix first and then 
put in the rest of the binary 
values in arbitrary order. In 
the parity check matrix the 
columns are in order 7, 6, 5, 
3, 1, 2 and 4. Then the 
generator matrix is easily 
constructed.
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Hamming codes
The decoding, validating the received code word, Y, involves 
multiplying it by a parity check to form S, the syndrome or parity 
check vector.

The received code word can be seen as:

Y = X + E
Where X is the transmitted code word and E is the error pattern 
which is the 0-vector if the received code word contains no error

In order to find a method for decoding the code word it is assumed 
that there exists a matrix H such that

XHT = 0
for all code word X. 

Hamming codes

H = [-AT | I] =
| 1 1 1 0 | 1 0 0 | 
| 0 1 1 1 | 0 1 0 |  
| 0 1 0 1 | 0 0 1 | 

The syndrome, S, is defined as:

S=YHT=XHT+EHT=EHT

The decoding matrix H must fulfill:

GHT=0
where H is the parity check matrix defined as:

H = [-AT | I]

An important observation is that the syndrome is not dependent 
on the code word, Y, its is only dependent on the error vector, E. 
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Hamming codes
If all elements of syndrome, S, are zero, the code word was 
received correctly. If S contains non-zero elements, the bit error 
can be determined by analyzing which parity check that has failed, 
as long as the error involves only a single bit.

It is 2n-k –1 different syndrome pattern, which means that there 
are no direct representation between the syndrome and the error 
pattern.

The strategy is that a certain syndrome pattern maps to the most
probable error.

This is implemented as a table that gives which error pattern that 
match which syndrome, this table is called a standard array. The 
error pattern with the lowest hamming weight, the most probable 
match for each syndrome is called the co-set leader.

Hamming codes
The received code word is 
read into a shift register 
where the syndrome 
calculation is performed. 

The result is an address to a 
ROM where the most 
probable error patterns has 
been stored. 

The chosen error pattern is 
read into a shift register 
where subtraction from the 
received word is performed
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Cyclic codes
(Polynomial representation)

Cyclic codes
• Most of the error correcting block codes that are in use 

are in the category called cyclic codes.
• If the n-bit sequence c=(c0, c1…cn-1) is a valid code 

word, then (cn-1, c0, c1….cn-2), which is formed by 
cyclically shifting c one place to the right, is also a 
valid code word.

• This class of codes can be easily encoded and 
decoded using linear feedback shift registers (LFSR).

• Examples of cyclic codes are Bose Chaudhuri-
Hocquenhem (BCH) and Reed-Solomon (RS) codes.
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Cyclic codes
• The LFSR implementation of a cyclic error 

correcting encoder is the same as that of the 
CRC error detecting code.

• The key difference is that CRC code takes an 
input of arbitrary length and produces a fixed-
length CRC check code, while a cyclic error 
correcting code takes a fixed-length input (k
bits) and produces a fixed length check code 
(n-k bits).

Cyclic codes
For the encoder, the k bits are treated as input to produce a 
(n - k) code of check bits in the shift register.

For the decoder, the input is the received bit stream of n bits, 
consisting of k data bits followed by (n-k) parity bits. If there 
have been no errors after the k first steps, the shift register 
contains the pattern of check bits that were transmitted. After 
the remaining (n - k) steps, the shift register contains the 
syndrome. 
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Cyclic codes

• Process received bits to compute the syndrome in 
exactly the same fashion as the encoder process the 
data bits to produce the check code.

• If the syndrome bits are all zero, no error has been 
detected.

• If the syndrome is nonzero, perform additional 
processing on the syndrome for error correction.

For decoding a cyclic code, the following procedure is 
used:

Cyclic codes
The cyclic code can also be represented on polynomial form 
(recall the CRC):

( ) ( )( )
( ) ( )

n kX D X C XQ X
P X P X

−

= +

The data block is shifted to the left by n-k bits and divided by P(X). 
This produces a quotient Q(X) and a remainder C(X) of length (n-
k) bits. The transmitted block is formed by concatenating D(X) and 
C(X).

( ) ( ) ( )n kT X X D X C X−= +
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Cyclic codes

If there are no errors on the reception T(X) will be exactly 
divisible by P(X) with no remainder.

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

n kT X X D X C X C X C XQ X Q X
P X P X P X P X P X

− ⎛ ⎞
= + = + + =⎜ ⎟

⎝ ⎠

( ) ( )( )
( ) ( )

n kX D X C XQ X
P X P X

−

= +

The last equality is valid because of the modulo2 arithmetic 
(a+a=0), so far we have the same function as for the CRC.

Cyclic codes
If one or more bit errors occur, then the received block Z(X) will be 
of the form: 

( ) ( ) ( )Z X T X E X= +
Where E(X) is an n-bit error polynomial with a value ’1’ in each 
bit position that is an error in Z(X). 

When the Z(X) is decoded we are performing Z(X)/P(X), which 
produces the (n-k) syndrome S(X):

( ) ( )( )
( ) ( )

Z X S XB X
P X P X

= +

where B(X) is the quotient and S(X) is the remainder. S(X) is a 
function of Z(X). But how does that help us to perform error 
correction.
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Cyclic codes
( ) ( )( )
( ) ( )

Z X S XB X
P X P X

= +Lets expand: 

( ) ( ) ( )( )
( ) ( )

T X E X S XB X
P X P X
+

= +

{                 }( ) ( ) ( )Z X T X E X= +

{  }( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

n kT X X D X C X C X C XQ X Q X
P X P X P X P X P X

− ⎛ ⎞
= + = + + =⎜ ⎟

⎝ ⎠

remembering

We get:

( ) ( )( ) ( )
( ) ( )

E X S XQ X B X
P X P X

+ = + [ ]( ) ( )( ) ( )
( ) ( )

E X S XQ X B X
P X P X

= + +=>

Cyclic codes
[ ]( ) ( )( ) ( )

( ) ( )
E X S XQ X B X
P X P X

= + +

E(X)/P(X) produces the same remainder as Z(X)/P(X). 
Therefore regardless of the initial pattern of bits, T(X), the 
syndrome value S(X) depends only on the error bits E(X).

If we can recover the E(X) from S(X), then we can correct the 
errors in Z(X) by simple addition:

( ) ( )( )
( ) ( )

Z X S XB X
P X P X

= +

( ) ( ) ( ) ( ) ( ) ( )Z X E X T X E X E X T X+ = + + =

This is done with a table that map S(X) to E(X).
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Cyclic codes example (pp 226)
Consider a (7,4) code with the generator polynomial P(X)=X3+X2+1

For the data block 1010, we have D(X) = X3+X and T(X)=X6+X4

T(X) = 2n-kD(X) + C(X) = X6 + X4 + 1 = 1 0 1 0 0 0 1

( ) ( ) ( )
( ) ( ) ( )

n kT X X D X C X
P X P X P X

−

= +Using: we get:

Cyclic codes example (pp 226)

If we then calculate the 
code word for all possible 
blocks of data we get the 
following table.

This table can actually be 
used to directly map data 
block into code words 
instead of performing the 
actual calculation for each 
new data block 
transmission.
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Cyclic codes example (pp 226)
For error correction we need to construct the syndrome table for
single errors using:

Lets start with 1000000 => E(X)=X6

[ ]( ) ( )( ) ( )
( ) ( )

E X S XQ X B X
P X P X

= + +

The syndrome for the error pattern 1 0 0 0 0 0 0 0 is the 1 0 1. We 
do the same for all single error patterns and get a table of 
syndromes.

Cyclic codes example (pp 226)



13

Cyclic codes example (pp 226)
Now suppose that we received block 1101101 => 

Z(X) = X6+X5+X3+X2+1 

Using: ( ) ( )( )
( ) ( )

Z X S XB X
P X P X

= +

We get a syndrome S=101, which according to the 
syndrome table is equal to the error pattern E=0 0 0 1 0 0 
0. Then:

T = 1 1 0 1 1 0 1 ⊕ 0 0 0 1 0 0 0 =1 1 0 0 1 0 1 which are 
equally to the data block 1 1 0 0.

we get

BCH code
BCH codes are among the most powerful cyclic block codes and 
are widely used in wireless applications. For any pair of integers 
m and t, there is a binary (n,k) BCH codes with the following 
parameters:

Block length: n = 2m - 1

Number of check bits: n – k ≤ mt

Minimum distance: dmin ≥ 2t+1

This code can correct all combinations of t or fewer errors. The 
generator polynomial for this code can be constructed from the 
factors of X2m-1+1.
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BCH code
Some BCH polynomial generators is:

Reed-Solomon codes
Reed Solomon (RS) codes are a widely used subclass of non-
binary BCH codes.

With RS codes, data are processed in chunks of m bits, called 
symbols. An (n.k) RS code has the following parameters:

Symbol length: m bits per symbol

Block length: n=2m-1 symbols=m(2m - 1) bits

Data length: k symbols

Size of check code: n – k = 2t symbols = m(2t) bits

Minimum distance: dmin = 2t +1 symbols

The encoding algorithm expands a block of k symbols to n
symbols by adding n - k redundant check symbols. Typically m is 
a power of 2.
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Interleaving

Interleaving

Channel 
encoder Channel Channel 

decoderπ π
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Interleaving

Y         
X       

Interleaving
• The advantage of interleaving is that a burst error that 

affect a sequence of bits is spread out over a number 
of separate blocks at the receiver so that error 
correction is possible. 

• Interleaving is accomplished  by reading and writing 
data from a memory in different orders block 
interleaving.

• Or by convolutional interleaving, where there is no 
fixed block structure.
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Block interleaving

Convolutional interleaving


